skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vecellio, Veronica"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In humans and chimpanzees, most intraspecific killing occurs during coalitionary intergroup conflict. In the closely related genus Gorilla, such behavior has not been described. We report three cases of multi-male, multi-female wild mountain gorilla ( G. beringei ) groups attacking extra-group males. The behavior was strikingly similar to reports in chimpanzees, but was never observed in gorillas until after a demographic transition left ~25% of the population living in large social groups with multiple (3+) males. Resource competition is generally considered a motivator of great apes’ (including humans) violent intergroup conflict, but mountain gorillas are non-territorial herbivores with low feeding competition. While adult male gorillas have a defensible resource (i.e. females) and nursing/pregnant females are likely motivated to drive off potentially infanticidal intruders, the participation of others (e.g. juveniles, sub-adults, cycling females) is harder to explain. We speculate that the potential for severe group disruption when current alpha males are severely injured or killed may provide sufficient motivation when the costs to participants are low. These observations suggest that the gorilla population’s recent increase in multi-male groups facilitated the emergence of such behavior, and indicates social structure is a key predictor of coalitionary aggression even in the absence of meaningful resource stress. 
    more » « less
  2. Abstract ObjectivesSeveral theories have been proposed to explain the impact of ecological conditions on differences in life history variables within and between species. Here we compare female life history parameters of one western lowland gorilla population(Gorilla gorilla gorilla) and two mountain gorilla populations(Gorilla beringei beringei). Materials and MethodsWe compared the age of natal dispersal, age of first birth, interbirth interval, and birth rates using long‐term demographic datasets from Mbeli Bai (western gorillas), Bwindi Impenetrable National Park and the Virunga Massif (mountain gorillas). ResultsThe Mbeli western gorillas had the latest age at first birth, longest interbirth interval, and slowest surviving birth rate compared to the Virunga mountain gorillas. Bwindi mountain gorillas were intermediate in their life history patterns. DiscussionThese patterns are consistent with differences in feeding ecology across sites. However, it is not possible to determine the evolutionary mechanisms responsible for these differences, whether a consequence of genetic adaptation to fluctuating food supplies (“ecological risk aversion hypothesis”) or phenotypic plasticity in response to the abundance of food (“energy balance hypothesis”). Our results do not seem consistent with the extrinsic mortality risks at each site, but current conditions for mountain gorillas are unlikely to match their evolutionary history. Not all traits fell along the expected fast‐slow continuum, which illustrates that they can vary independently from each other (“modularity model”). Thus, the life history traits of each gorilla population may reflect a complex interplay of multiple ecological influences that are operating through both genetic adaptations and phenotypic plasticity. 
    more » « less